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What is speech recognition?

* Speech-to-text transcription
o Transform recorded audio into a sequence of words
o Just the words, no meaning.... But do need to deal with acoustic ambiguity: "Recognise
speech?” or "Wreck a nice beach?”
o Speaker diarization: Who spoke when?
o Speech recognition: what did they say?
o Paralinguistic aspects: how did they say it? (timing, intonation, voice quality)
o Speech understanding: what does it mean?
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Applications of ASR
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* Dictation H
 Language learning b BIbe a Hey Siri

* Smart speakers (Alexa, Siri)

* Accessibility for hearing impaired

* Voice command Nyl
* Automatic captioning %3 |'|iﬁw S—

* Audio indexing

¢ Machine translation * /J \§@$ O Cortana

* Meeting understanding and summarization

alexa
S

* Call center analysis

* TV remote DUER ®S “.

MIETIA T ERERIERS

Google Assistant
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Enable ChatGPT with voice input/output
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Why is speech recognition difficult?
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* Several sources of variation

o Size

o Number of word types in vocabulary, perplexity
o Speaker

o Tuned for a particular speaker, or speaker-independent? Adaptation to speaker characteristics
o Acoustic environment

o Noise, competing speakers, channel conditions (microphone, phone line, room acoustics)
o Style

o Continuously spoken or isolated? Planned monologue or spontaneous conversation?
o Accent/dialect

O Recognise the speech of all speakers who speak a particular language
o Language spoken

o There are many languages beyond English, Mandarin Chinese, Spanish, .. . What is the difference between a dialect and a language?
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Hierarchical modelling of speech
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Statistical Speech Recognition
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* If X'is the sequence of acoustic feature vectors (observations) and W denotes a word sequence,

the most likely word sequence W* is given by
W?* = argmax P(W|X)
w

* Applying Bayes' Theorem:

P(X|\W)P(W
PWIX) = ( |P())()( )
x PX|W)P(W)

W = argmale (X| W)l IP (W)lﬁ Language model

/

9 Acoustic model
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Speech Recognition Components
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W?* = argmax P(W|X) Recorded Speech X Decoded Text 4
v l (Transcription)
* Use an acoustic model, language model, and
lexicon to obtain the most probable word Signal
Analysis X
sequence W* given the observed acoustics X Acl::;(ust!c\’\0
Model
P 4
e
< : Search
- Lexicon S
Training pace
Data
- P(W) W
"‘ Language

Model
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Alternative approach: End-to-end systems

* Directly model transforming an input acoustic sequence into an output word or character

sequence Recorded Speech X Decoded Text ,/«
l (Transcription)
Signal
Analysis /! p(X |W)
Acoustic
“odel
e g 4
e
7 "4
L - = Lexicon 4
Training
Data
- P(W)
- anguage

1 Model
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Alternative approach: End-to-end systems

* Directly model transforming an input acoustic sequence into an output word or character

sequence Recorded Speech X Decoded Text /s«
l (Transcription)
Signal

Analysis

Direct mapping:
accoustics to transcription

Training
Data
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Alternative approach: End-to-end systems

* Directly model transforming an input acoustic sequence into an output word or character

sequence "No ri%fi Utterance W

/

NO RIGH? Word

Subword

&8 Hm

Acoustics X
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Alternative approach: End-to-end systems

* Directly model transforming an input acoustic sequence into an output word or character

"No rig‘ht" Utterance W
-

?

sequence -

Direct mapping:
acoustics — transcription

Acoustic sequence mapped
to caracter/word sequence

Acoustics X
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Evaluation Metrics
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Reference:

o The quick brown fox jumped over the lazy dog

Hypothesis:

o The quick brown fox jumps over ---- lazy dog too

* Word error rate:
o WER=D+S+I N

o D: number of deleted words
O S: number of subsituted words
o |I: number of inserted words

o N:number of reference words

Readability: whether the recognized text is easy to read by human.
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Deep learning for ASR
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* Hybrid system: only replace HMM/GMM acoustic model with neural
networks

* End-to-end ASR: replace the whole ASR system with neural works
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Hybrid acoustic model

Frame level
class (senone)

Replace the generative HMM/GMM with a

discriminative neural networks label
* HMM/GMM models p(o,|s,)
* Hybrid models p(s,|o,) T
* Common practices ! A
o Train an HMM/GMM first Encoder
o Use it to align the label (senone sequences) to the feature N /
sequence. T
o Train neural networks to predict frame level senone labels Acoustic

. features
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Encoder Structures
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* DNN

* CNN

* LSTM

* Transformer

* Or any combination of them
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End-to-end ASR
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* End-to-end ASR systems try to do ASR with a single model

* Three main approaches
o Connectionist Temporal Classification
o RNN Transducers

o Sequence-to-Sequence
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Sequence-to-sequence (525)
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* S2Sisalso called attention encoder decoder (AED) P(yulT1:7, Y1:0-1)

* Encoder: similar to acoustic model

* Attention: alignment model

* Decoder: similar to pronunciation and language

model

e Offline model
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RNN Transducers (RNN-T)
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* Called RNN-T because originally RNN is used as the

encoder model structure. P(yul21:6, Y1:u—1)

* Newer models uses transformers or conformers as
encoder

* A native streaming model
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The alignment problem
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* We have a data set of speech, handwriting, other sequential data and the

corresponding transcripts

* Problem: we don’t know how the outputs align to the inputs

o i.e., which frame(s) of the input correspond to which output frame

L lujmipls] Jo]vlelr] Jtihle] |']alz]y] ]dlo]g] [t[hle] [afu]i]c]k] Jolr]olwin] Jflo]x]

TAe zw’&'(’ browr Ffox

or some other frequency based feature extractor. coordinates of a pen stroke or pixels in an image.
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The alignment problem: Naive solutions

* We could devise arule like “one character corresponds to ten inputs”.

o But people’s rates of speech vary, so this type of rule can always be broken.
* Another alternative is to hand-align each character to its location in the

audio.
o May work well, but we'd know the ground truth for each input time-step

o For any reasonably sized dataset this is prohibitively time consuming.

jJulmpls] Jo]v]e|r] HttheH [1alz]y] Id]e]d]

IO,

Speech recognition: The input can be a spectrogram
or some other frequency based feature extractor.
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Solution: Connectionist Temporal Classification
(CTC) i1s a way to get around not knowing the

alignment between the input and the output



Problem definition
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* Given:
o Asequence X=[x,,X,,...,x7] (audio)
o The corresponding output sequence Y=[y,,y,,...,yul (transcript)

* We want to find an accurate mapping from X toY

* Challenges:

o BothXandY canvaryinlength
o Theratio of the lengths of X andY can vary.

o We don't have an accurate alignment (correspondence of the elements) of XandY

* The CTC algorithm overcomes these challenges and for a given X it gives an output distribution

over all possibleY

o We can use this distribution either to infer a likely output or to assess the probability of a given output.
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The algorithm: Alignment

* Assume the input has length sixandY = [c, a, t]. One way to align X andY is

to assign an output character to each input step and collapse repeats

* This approach has two problems:

o It doesn't make sense to force every input X; X, X3 X, X5 X, input (X)
step to align to some output
C C a a a t alignment
o We have no way to produce outputs with
multiple characters in a row. C d t output (¥)

o The alignment[h, h, e, |, |, 1, o] collapses to “helo”

30
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The algorithm: CTC Alignment

* CTCintroduces a new token € called the blank token
* The e token doesn’t correspond to anything
* We allow any alignment which maps toY after merging repeats and

removing € tokens:

hheeel | | el | o
First, merge repeat
characters.

h e € e | o©
Then, remove any €
tokens.

h e | O

The remaining characters
are the output.

31

Deakin University CRICOS Provider Code: 00113B

DEAKIN

UNIVERSITY




The algorithm: CTC Alignment Examples
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Valid Alignments Invalid Alignments

corresponds to
€ C Ce€ at C 636 a 1 Y=[c, c at]
C C a ait t C C a at has length 5

C ae€ € €t C € € €|t t missing the 'a’
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The algorithm: CTC Alignment Properties

* The allowed alignments between X andY are monotonic.
o If we advance to the next input, we can keep the corresponding output the same or

advance to the next one.

* The alignment of X toY is many-to-one.

o One or more input elements can align to a single output element but not vice-versa.

* The length of Y cannot be greater than the length of X.

X; X, X3 Xy X5 Xg input (X)
C C a a at alignment

33 C a t output (Y)
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The algorithm: Loss Function

* The CTCalignments gives us a

probability of an output sequence

* The CTC objective for a single (X,Y)

pairis:

pY | X) =

2

AEAX,Y

The CTC conditional
probability

marginalizes over the
set of valid alignments
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computing the probability for a
single alignment step-by-step.

N M)

~

2 T
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We start with an input sequence,
like a spectrogram of audio.

The input is fed into an RNN,
for example.

The network gives p, (a | X),
a distribution over the outputs
{h, e, |, 0, €} for each input step.

With the per time-step output
distribution, we compute the
probability of different sequence:

By marginalizing over alignments,
we get a distribution over outputs
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The algorithm: Loss Function

* The CTCloss can be very expensive to compute.

o A brute force approach that computes the score for each alignment is expensive

» There can be a massive number of alignments.
* We can compute the loss faster with a dynamic programming algorithm

o If two alignments have reached the same output at the same step, they can be merged
I AN

35 Summing over all alignments can be very expensive. Dynamic programming merges alignments, so it's much
faster.
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The algorithm: Loss Function

* Example of the computation performed by the dynamic programming algorithm

* Every valid alignment has a path in this graph.

* Foratraining set D, the loss function is:

f‘\>Q\>
S xS el

(X,Y)eD rofe \»
* The CTC loss function is differentiable )

Two final
nodes

since it's just sums and products of

€

probabilities

36 Node (s, t) in the diagram represents a ; — the CTC
Deakin University CRICOS Provider Code: 001138 score of the subsequence Zl:s after t input steps.



The algorithm: Inference
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* Find a likely output for a given input by solving:

Y* = argmax p(Y | X)
Y

* Need to settle for an approximate solution, too expensive to search for the
true max

* One heuristic is to take the most likely character at each output
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The algorithm: Inference
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Y* = argmax p(Y | X)
Y

* Problems?
o Does not take into account that the same outputY could be produced by two different
alignments
o [a,a] and [a,a,a] individually have lower probability than [b,b], but combined higher
and they collapse to [a]
o With this heuristic, [b] gets picked
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The algorithm: Inference

* A better heuristic is to use modified beam search Y* argmax p(Y | X)
Y

 Can exchange speed for asymptotically better solution

T=1 T=2 T=3 T=4

hypotheses  ex tensions hypotheses  extensions hypotheses @~ ex tensions hypotheses

The CTC beam search algorithm with an output
alphabet {¢, a, b} and a beam size of three.
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